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Connate topological superconductor (TSC) combines topological surface states with nodeless supercon-
ductivity in a single material, achieving effective p-wave pairing without interface complication. By com-
bining angle-resolved photoemission spectroscopy and in-situ molecular beam epitaxy, we studied the
momentum-resolved superconductivity in b-Bi2Pd film. We found that the superconducting gap of topo-
logical surface state (DTSS � 3.8 meV) is anomalously enhanced from its bulk value (Db � 0.8 meV). The
ratio of 2DTSS/kBTc � 16.3, is substantially larger than the BCS value. By measuring b-Bi2Pd bulk single
crystal as a comparison, we clearly observed the upward-shift of chemical potential in the film. In addi-
tion, a concomitant increasing of surface weight on the topological surface state was revealed by our first
principle calculation, suggesting that the Dirac-fermion-mediated parity mixing may cause this anoma-
lous superconducting enhancement. Our results establish b-Bi2Pd film as a unique case of connate TSCs
with a highly enhanced topological superconducting gap, which may stabilize Majorana zero modes at a
higher temperature.

� 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

The studies of superconducting (SC) topological surface states
[1] have been propelled by the prospect of harboring vortex-
confined Majorana zero mode (MZM) [2,3], which is widely
believed to be a building block of fault-tolerant quantum computa-
tion [4]. Theoretically, MZMs can emerge as a special type of Bogoli-
ubov excitations in an intrinsic topological superconductor (TSC)
with p-wave pairing [5,6], or in artificial designs combing conven-
tional s-wave superconductivity with special band structures
[1,7–27], e.g., the topological insulating states [1,7–9,16,20–22].
In the latter case, a superconducting topological surface state has
been proved to play a similar role as a two-dimensional p-wave
superconductor [1,2]. An effective p-wave superconductivity can
be realized on the interface of a proximitized heterostructure
between an s-wave superconductor and a strong topological
insulator (TI) [16,20–22], or on the sample surface of a self-
proximitized connate TSC [28–53], i.e., a full-gapped bulk super-
conductor holds topological surface states [47,51]. Heterostruc-
tures usually suffer shortcomings such as gap softness [54,55] and
fragile device fabrication [26,27], thus are difficult for observing
and manipulating MZMs in experiments [55,56]. It has been a long
sought-after goal to find an ideal platform which can easily create,
measure and controlMZMs. Recently, topological surface states and
MZMs are observed clearly in single material platforms of Fe(Te,Se)
bulk single crystals [38–50] and similar compounds of iron-based
superconductors [49,51–53], which indicates that a connate TSC
is a promising platform for pursuing topological quantum computa-
tion [47].

The SC gap of topological surface state (DTSS) plays a vital role in
protecting MZM that a larger DTSS leads to a larger energetic sepa-
ration between MZM and other trivial excitations [2,43,44]. In gen-
eral, DTSS of a surface state is smaller than the SC gap of bulk bands
(Db), due to the proximitized pairing amplitude decays from bulk
to surface. Interestingly, a special candidate of connate TSC,
b-Bi2Pd film, may break this rule [34–36]. A previous scanning
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tunneling microscopy/spectroscopy (STM/S) experiment found two
SC gaps (D1 � 1.0 meV and D2 � 3.3 meV) in the b-Bi2Pd film
grown by molecular beam epitaxy [35], while only the smaller
one (D1) compares to the SC gap of b-Bi2Pd bulk single crystal
(Db � 0.8 meV, Tc = 5.4 K) [36,57,58]. Large zero-bias conductance
peaks (ZBCPs) were observed in the line-cut measurement across
its SC vortices. The ZBCPs do not split within a certain length from
the vortex center, which indicates certain mixtures of MZMs inside
the intensity of ZBCPs [35]. Consequently, the anomalous large gap
(D2) was attributed to the enhanced DTSS of the topological surface
state, but the direct momentum-resolving evidence is still absent
[35,59]. In this work, we performed angle-resolved photoemission
spectroscopy (ARPES) measurements on as-grown b-Bi2Pd thin
film to directly resolve the origin of the large gap D2 [35]. We
found the experimental evidences of an anomalously large SC
gap at the Fermi-momentum (kF) of topological surface state which
likely corresponds to D2. On the contrary, no such large SC gap can
be found in neither the trivial surface state nor the bulk bands. By
comparing with bulk single crystal, we showed that the chemical
Fig. 1. (Color online) Crystal and electronic structure of the b-Bi2Pd film. (a) Crystal struc
unit cell (UC) is made up of two Bi-Pd-Bi triple layers. (b) Projected surface Brillouin zo
image of as-grown 20-UC b-Bi2Pd film (setpoint voltage: Vs = 2.13 V, tunneling current: It
taken from the (001) surface on an annealed SrTiO3 substrate (top panel) and that of b-Bi2
indicating high crystalline coherence. (e) X-ray diffraction spectrum taken from the same
fold symmetrized Fermi surface obtained by ARPES at 20 K shows spectral weight wit
electron bands (c, d). Black arrows with numbers #1 to #5 mark the positions of the cu
potential is shifted upward in the film, which might be the cause
of the deviation between different types of samples.
2. Methods

The (001)-oriented 20-UC b-Bi2Pd thin films were epitaxially
grown on Nb-doped (0.7 wt%) SrTiO3(001) substrates at � 320 �C.
High-purity Bi (99.9999%) and Pd (99.99%) sources were co-
evaporated from Knudsen cells with a flux ratio of 5.3, which were
measured by a quartz crystal monitor. Films were studied in-situ
using home-made room-temperature STM and low-temperature
ARPES with ultrahigh vacuum better than 3.0 � 10�11 Torr
(1 Torr � 133.322 Pa). The ARPES system is equipped with a
Scienta R4000 analyzer and a helium discharge lamp with He-Ia
photons (21.218 eV). The energy resolution was set � 3 meV for
gap measurements and � 7 meV for band structure measurements.
The angular resolution was set to � 0.2�. ARPES measurements on
b-Bi2Pd bulk single crystals with 20 eV photons were performed at
ture of tetragonal b-Bi2Pd film. Layers are stacked by van der Waals interaction. Each
ne with high symmetry points (�C, �M and �X). (c) Constant-current STM topographic
= 270 pA, 500 nm � 500 nm). (d) Reflection high-energy electron diffraction pattern
Pd filmwith Kikuchi lines formed by inelastically scattered electrons (bottom panel),
film illustrates lattice constant c = 12.97 Å (X-rays with wavelength 1.54 Å). (f) Four-
hin EF ± 10 meV. The Fermi surface is composed of two hole bands (a, b) and two
ts shown in Fig. 2e. (g) Large-range ARPES spectrum observed along �C� �X.
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the ‘‘Dreamline” beamline of the Shanghai Synchrotron Radiation
Facility (SSRF) with a Scienta DA30 analyzer.

3. Results and discussion

The 20-UC b-Bi2Pd thin films measured in this work have
tetragonal structure (space group I4/mmm) (Fig. 1a). The lattice
mismatch between substrate and b-Bi2Pd is released as growing
layer-by-layer. Lattice constants of thin film are a = b = 3.41 Å,
c = 12.97 Å, obtained by in-situ reflection high-energy electron
diffraction measurement (bottom panel of Fig. 1d) and X-ray
diffraction (XRD) (Fig. 1e), which are in good agreement with the
bulk single crystal. A STM image of the film (Fig. 1c) shows
patch-like growing nature of b-Bi2Pd, which is consistent with pre-
vious STM study that observed two SC gaps [35]. Our XRD mea-
surements show (001)-oriented single crystallization of thin
films. We performed ARPES measurements on these films with
He-Ia photons. Similar as the results of the bulk single crystal
[34], four-fold symmetric Fermi surfaces with four Fermi pockets
are resolved (Fig. 1f). The band dispersion along �C� �X (Fig. 1b) is
plotted in Fig. 1g, with two hole-like bands (a, b) and one
electron-like band (c) crossing the Fermi level (EF).

It has been resolved in b-Bi2Pd bulk single crystal that a surface
Dirac cone appears beneath the a band [34], with the binding
energy of the Dirac point around �2.4 eV. It is known that in a thin
film of TI within only a few layers, the topological surface states on
the two sides may strongly hybridize with each other, leading to
gap opening at the Dirac point [60,61]. An ideal TI preserving topo-
logical protection should be free of such a hybridization gap. We
checked the spectra of high binding energy between �1.4 and
�3 eV in our measurements. A clear Dirac dispersion (Fig. 2a) with
isotropic constant-energy contours (Fig. 2b) can be observed, sug-
gesting that our 20-UC thin film keeps the topological surface
states intact and is similar to the bulk material [34].

Next, we turn to the surface states near EF. We display ARPES
dispersion near EF along �C� �X (Fig. 2c). Besides the bulk bands
Fig. 2. (Color online) Surface states of the b-Bi2Pd film. (a) High binding energy band disp
Constant energy contours at binding energy ED, ED + 0.4 eV and ED + 0.8 eV, where ED (�2
near EF measured at 20 K. The topological surface state c0 connects the c and b bulk states
the extracted momentum distribution curve (MDC) at EF. Three representative moment
respectively. (d) Curvature intensity plot of the c and c0 bands. (e) Momentum dependen
MDCs extracted at EF for the five cuts, offset for clarity.
mentioned before (Fig. 1g), there are two distinguishable surface
states observed in our measurements. According to previous
experiments [34] and our first principle calculation, we clearly
identify those bands as a trivial surface state (b0) deriving from
the b band and a topological surface state (c0) connecting the b
and c bands. Remarkably, there is an obvious dip between c0 and
c bands in the momentum distribution curve (MDC) extracted at
EF (the red curve appended in Fig. 2c), which is more distinct in
the film as comparing to the previous study on the bulk single crys-
tal [34]. The separation between the topological surface states and
the bulk bands is clearly demonstrated in a curvature intensity plot
around the c0 and c bands (Fig. 2d). It leads us to conjecture that
more surface state components are presented in the film materials,
which preserves the topological properties from overlapping with
other bulk signals. We display five cuts along ky (Fig. 2e), with their
kx positions indicated in Fig. 1f. The Fermi-level MDCs show c0

gradually merges into c, when moving from the Brillouin zone cen-
ter (cut#1) to the edge (cut#5) (Fig. 2f). It implies that the surface
components reach the maximum at �C� �X, which is the best place
to study the intrinsic superconductivity of topological surface state
(c0) in the films.

Next, we focus on the momentum-resolved superconductivity
of b-Bi2Pd film. We performed high-resolution ARPES measure-
ments along �C� �X under different temperatures, i.e., below Tc
(2.7 K) (Fig. 3a) and above Tc (20 K) (Fig. 3b). We notice that the
topological surface state (c0) bends toward higher binding energy
when k approaches kF at 2.7 K (Fig. 3a), while the band straightly
crosses EF at 20 K (Fig. 3b). This behavior implies the formation
of a SC gap. The bending back feature is a characteristic of Bogoli-
ubov dispersion of SC state. The Bogoliubov quasiparticles produce
a sharp coherent peak and its position can be defined as the size of
SC gap [62–68]. We extracted energy distribution curves (EDCs) at
three representative momenta, namely k1, k2 and k3 (as marked in
Fig. 2c), which correspond to the kF values of topological surface
state (c0), trivial surface state (b0) and bulk state (a), respectively.
Surprisingly, at k1, the EDC measured at 2.7 K shows a sharp peak
ersion of 20-UC b-Bi2Pd film. An intact surface Dirac cone dispersion along �C� �X. (b)
.4 eV) is the energy of the Dirac point. (c) Close-up of ARPES spectrum (along �C� �X)
, and the trivial surface state b0 derived from the bulk state b. The red line represents
a, namely k1, k2 and k3, correspond to the Fermi momentum of c0 , b0 and a bands,
ce of the c and c0 dispersions, kx positions of cuts #1 to #5 are indicated in Fig. 1f. (f)



Fig. 3. (Color online) Temperature dependence on surface and bulk state of b-Bi2Pd film. Close-up of ARPES spectra near EF along �C� �X measured on the topological surface
state (c0) at 2.7 K (a) and 20 K (b), respectively. (c) A collection of SC gaps measured on b-Bi2Pd samples. Red (blue) color represents the size of SC gap on the topological
surface state Ds (bulk band Db). The SC gap measured on bulk single crystal is about 0.8 meV measured by scanning tunneling spectroscopy (STS) [36,57]. The SC gap values
measured on the film in previous STM experiments [35] are 1 meV (D1) and 3.3 meV (D2), which are assigned as SC gap on bulk bands and topological surface states,
respectively. The SC gap measured on the topological surface state in this work is 3.8 meV. (d) The energy distribution curves (EDCs) are extracted on the momentum k1
(topological surface state) at 2.7 K (red curve) and 20 K (blue curve). (e) and (f) are same as (d) but measured on momenta k2 (trivial surface state) and k3 (bulk state),
respectively.
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at �3.8 meV (the red curve in Fig. 3d), which was in contrast with
the featureless EDC measured at 20 K (the blue curve in Fig. 3d).
We attributed this sharp peak as the enhanced SC gap as measured
in the previous STM/S study (D2 � 3.3 meV) [35]. These observa-
tions were reproduced several times in different samples (see Sup-
plementary data), which strengthens us confidence of the
existence of SC topological surface states in b-Bi2Pd films with an
anomalously large SC gap. We notice that the EDCs measured on
the kF of trivial surface state (Fig. 3e) and bulk band (Fig. 3f) are
featureless near EF, even at 2.7 K. This observation is reasonable
because the SC gap values of those bands (D1 � 1 meV of films
[35] and Db � 0.8 meV of bulk single crystal [36,57]) are much
smaller than the experimental energy resolution of our ARPES sys-
tem (� 3 meV). We summarize the gap sizes measured by different
techniques in Fig. 3c, and the SC gap measured in this work is com-
parable to previous STM/S observations [35]. The appearance of
two classes of SC gaps indicates the paring potential is indeed
enhanced on the topological surface states.

In order to resolve the puzzle of the anomalous SC gap enhance-
ment on the topological surface state in this film material, we con-
ducted comparison studies between 20-UC films and bulk single
crystals of b-Bi2Pd. We observed that the chemical potential shifts
upward about 37 meV in the thin film (Fig. 4a). We repeated this
measurement for several times on different samples and obtained
confirming results (see Supplementary data). Theoretically, the
odd and even components of the SC order parameter can mix with
each other on the sample surface due to inversion symmetry bro-
ken [69]. A similar phenomenon of enhanced DTSS was proposed in
CuxBi2Se3 previously [70], that the orbital polarization of topologi-
cal surface states leads to constructive parity mixing of SC order
parameters. However, the trivial surface states cannot support
such constructive mixing, although odd and even components of
the order parameter do coexist on the surface [70,71]. It was sug-
gested that a larger Fermi momentum separation (dk) between
topological surface states and adjacent bulk band, equivalently a
larger surface weight of topological surface states, can lead to a
stronger enhancement of DTSS [70]. However, the dk difference
between thin film and bulk single crystal is not quite clear in our
experiment. So that we performed a slab calculation to simulate
the surface weight of topological surface states at different chem-
ical potentials (see Supplementary data). The calculated band
structure is consistent with our experimental results and previous
studies [34,72]. The color scale in Fig. 4b indicates the surface
weight. Apparently, the surface weight becomes larger when the
chemical potential is increased (inset of Fig. 4b). Although our cal-
culation qualitatively supports the mechanism of Dirac-Fermion-



Fig. 4. (Color online) Upward chemical potential in the b-Bi2Pd film and calculated surface state weight by slab calculation. (a) EDCs at kB taken from a bulk single crystal
(blue curve) and a film (red curve) where kB represents the momentum of the c band bottom (top panel). We define the binding energy of the band bottom by the peaks of
first derivative of the EDCs (bottom panel). The chemical potential of the thin film shifts upward �37 meV as comparing with the bulk single crystal. (b) The projection of
(001) surface bands obtained by slab calculation of 11 Bi2Pd layers. The color scale indicates the weight of surface component. The inset shows the surface weight of c0 (blue
curve). The position of the chemical potential for the thin film (the bulk single crystal) as marked by red (grey) dot.
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mediated parity mixing [70] in explaining DTSS enhancement, the
surface weight difference between bulk single crystal and thin film
is only � 6%. Thus we caution on how such a small change could
lead to this large enhancement of SC gap. A realistic model or a dif-
ferent mechanism may be needed in order to resolve this puzzle.

4. Conclusion

In conclusion, we performed in-situ ARPES measurements on b-
Bi2Pd films and bulk single crystals. We observed a direct
momentum-resolved evidence of an anomalously large SC gap on
its topological surface state. A possible enhancing mechanism,
which is the Dirac-Fermion-mediated parity mixing [71], was dis-
cussed based on our observation of chemical potential shift and the
concomitant increasing of surface weight revealed in our first prin-
ciple calculations.
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